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A Prior Neurophysiologic Knowledge Free
Tensor-Based Scheme for Single Trial

EEG Classification
Jie Li, Liqing Zhang, Dacheng Tao, Han Sun, and Qibin Zhao

Abstract—Single trial electroencephalogram (EEG) classifica-
tion is essential in developing brain–computer interfaces (BCIs).
However, popular classification algorithms, e.g., common spatial
patterns (CSP), usually highly depend on the prior neurophys-
iologic knowledge for noise removing, although this knowledge
is not always known in practical applications. In this paper, a
novel tensor-based scheme is proposed for single trial EEG classi-
fication, which performs well without the prior neurophysiologic
knowledge. In this scheme, EEG signals are represented in the
spatial-spectral-temporal domain by the wavelet transform, the
multilinear discriminative subspace is reserved by the general
tensor discriminant analysis (GTDA), redundant indiscriminative
patterns are removed by Fisher score, and the classification is
conducted by the support vector machine (SVM). Applications to
three datasets confirm the effectiveness and the robustness of the
proposed tensor scheme in analyzing EEG signals, especially in
the case of lacking prior neurophysiologic knowledge.

Index Terms—Electroencephalogram (EEG), general tensor dis-
criminant analysis (GTDA), single trial classification.

I. INTRODUCTION

E LECTROENCEPHALOGRAM (EEG) is a measurement
of electrical activity in the brain collected using noninva-

sive electrodes attached to the scalp. Over the years, EEG has
been applied in a very wide variety of clinical and research con-
texts. Now, in computing, it is the most exploited sensory signal
in brain computer interface (BCI) which aims to use brain ac-
tivity to translate human intention and provide a new direct com-
munication channel between brain and computer. The poten-
tial applications of BCI are vast and range from an interesting
gadget in computer games to a useful tool for persons with se-
vere motor disabilities. A number of EEG-based BCI systems
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have been developed recently [14], [21]–[23], [29] in which pat-
terns of EEG in different mental states can be discriminated for
information transmission by feature extraction and classifica-
tion algorithms. Research [1], [8] has shown that their effec-
tiveness and efficiency depend on the quality of EEG feature
representation and the accuracy of pattern classification of the
recorded single trial EEG.

In a BCI system, the subject is required to perform different
tasks according to predefined mental control paradigms, which
would induce the biofeedback based on specific responses to
stimulus or event-related rhythm modulation, e.g., P300 speller
paradigm [7], self-regulation of rhythm [22], and motor imagery
[2], [26], and then the subject’s intention is conveyed by the pat-
tern changes of the recorded EEG. The most commonly used
mental control paradigm in BCI is the motor imagery. This is
because the motor imagery produces the attenuation of brain os-
cillatory activity within particular frequency bands over senso-
rimotor cortex [event-related desynchronizations (ERD)] [12],
and depending on the part of the body imagined moving, the
recorded EEG exhibits a distinctive pattern.

One of the most successful algorithms for single trial EEG
classification, evidenced by the 2003 BCI Competition [9], is
termed the common spatial patterns (CSP) [16]. CSP detects the
spectral discriminations between two classes of tasks by calcu-
lating discriminative spatial patterns that maximize the variance
of one class and at the same time minimize the variance of the
other, wherein the variance of the band-pass filtered EEG sig-
nals directly reflects the spectral power of the band frequency.
For the classification of two classes of motor imageries, CSP
achieves the accuracy above 90% on single trials EEG samples
[16]. Therefore, most existing BCI systems [2], [15] use the
CSP algorithm to characterize EEG patterns achieving reason-
able results in online discrimination of the motor imagery task.
Extensions of CSP for the multiclass classification [11] and inte-
grations with other forms information [10], [27], [35] have also
received increasing attention recently.

Although the CSP algorithm proves to be highly successful, it
is not optimized for the EEG classification problem. The perfor-
mance of CSP severely depends on the prior neurophysiologic
knowledge for noise removing, i.e., the preprocessing proce-
dure of the temporal filtering, because the CSP algorithm calcu-
lates discriminative spatial patterns based on the temporal vari-
ances of signals. Only having the EEG signals band-pass filtered
through the pre-identified frequency domain, high or low signal
variances could reflect a strong (enhanced) or a weak (atten-
uate) rhythmic activity respectively [32]. For the improvements
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of the information transfer rate and robustness of BCI, devel-
opment of new paradigms in BCI is necessary. However, if the
spectral characteristics in new paradigms are not well known
as the motor imagery task (i.e., for some tasks, the prior neuro-
physiologic knowledge is not available), CSP fails to work. It
is demanding to design a robust and effective algorithm for the
single trial EEG classification.

In this paper, a tensor-based scheme is proposed to classify
single trial EEG signals, which are represented by high order
tensors (multiway arrays) i.e., multiple-modality patterns in the
spatial-spectral-temporal domain. The multiple-modality pat-
terns are constructed by decomposing EEG signals based on
the wavelet transform. The general tensor discriminant analysis
(GTDA) [4] is applied to reserve multilinear discriminative sub-
space from the training tensors and thus high-dimensional ten-
sors are mapped to low-dimensional tensors. Fisher score [31]
is then utilized to further remove the discriminatively redun-
dant features from vectorized low dimensional tensors, and se-
lect most significant discriminative patterns from the multilinear
subspace. Finally, support vector machine (SVM) [3] is con-
ducted for classification in the feature space with the reduced
dimension. Empirical studies demonstrate the proposed scheme
outperforms power spectrum density (PSD), CSP, and nonneg-
ative multiway factorization (NMWF), and works well without
prior neurophysiologic knowledge.

Before we end the introduction section, it is worth reviewing
briefly some popular tensor models developed in recent years,
i.e., PARAFAC [30], Tucker model [25], nonnegative mul-
tiway/tensor factorization (NMWF/NTF) [28], streaming
tensor analysis [37], tensor subspace analysis (TSA) [34],
2-D linear discriminant analysis (2DLDA) [24], GTDA [4],
Bayesian tensor analysis [33], tensor locally linear embedding
[39], and supervised tensor learning [36]. In this paper, GTDA
is applied for discriminative multilinear subspace extraction
because 1) the discriminative information reserved in the
training tensors is preserved, whereas PARAFAC, Tucker
model, NMWF/NTF, and TSA do not and 2) GTDA provides
stable recognition accuracies due to the converged alternating
projection training algorithm to obtain a solution of GTDA,
whereas that of 2DLDA does not. GTDA decomposes ten-
sors into core tensors and a series of discriminative matrices
(linear subspaces) by maximizing the projected between-class
variance and minimizing the projected within-classes variance
over every modality. Therefore, GTDA can be employed here
to construct multilinear discriminative subspace from high
dimensional and high order tensors.

The remainder of the paper is organized as follows. Sec-
tion II presents the proposed scheme. Section III describes three
datasets from different types of paradigms. Section IV demon-
strates the experiments and results to verify the effectiveness of
the proposed scheme. Section V offers our conclusion.

II. TENSOR-BASED SCHEME FOR THE

EEG CLASSIFICATION

In this section, we first present the proposed tensor scheme,
and then detail descriptions of all components, i.e., wavelet
transform based EEG signal representation, GTDA for mul-
tilinear subspace selection, Fisher score for feature redun-

dancy elimination, and support vector machine (SVM) for
classification.

A. Tensor-Based Scheme

This part presents the proposed tensor-based scheme for
single trial EEG classification. Fig. 1 illustrates the proposed
scheme, which consists of five components: first, 62 channels of
EEG signals are collected by an ESI-128 Channel High-Resolu-
tion EEG/EP Systems (SynAmps2, Neuroscan, Charlotte,NC);
second, the obtained EEG signals are decomposed by the
wavelet transform and represented in the spatial-spectral-tem-
poral domain as high-dimensional third-order tensors; third,
GTDA is applied to reserve multilinear discriminative subspace
from the training tensors and thus high-dimensional tensors are
mapped to low-dimensional tensors; fourth, the vectorization
operation is applied to these low-dimensional tensors and the
Fisher score is utilized to eliminate redundant indiscriminative
patterns from discriminative subspace; and finally, SVM is
trained for precise classification.

B. EEG Signal Representation

In the proposed scheme, EEG signals are represented as
high-order tensors in the spatial-spectral-temporal domain. For
a two-way (channel time) EEG epoch sample at channel

and time , the third-order (channel frequency time) tensor
at channel , frequency and time is given by the

amplitude of the convolution with a wavelet function

(1)

In this work, we select the complex Morlet wavelet,
(with the center

frequency , and the bandwidth parameter ) as the
mother wavelet, since it has been well applied to the analysis
of the temporal development of the frequency of EEG signals
[28].

C. GTDA

In this scheme, GTDA is applied for discriminative multi-
linear subspace extraction. Let denote the th

training sample (tensor) in the th individual
class. Totally, there are training samples.

is the mean tensor of the samples in

the th class, is the mean tensor of
all training samples, and denotes the th modality projec-
tion matrix for decomposition in the training procedure. More-
over, , and are all -order tensors in

. In GTDA [4], the optimal projection matrices
is given by

(2)

where is a tuning parameter and is automatically selected
during the training procedure according to [4].
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Fig. 1. The tensor-based scheme for single trial EEG classification. The black line stands for the procedure used in the training stage, and the red line stands for
the testing procedure.

GTDA has the following advantages: 1) GTDA treats each
modality of training tensors independently to tackle the small
sample size problem in discriminative subspace selection,
2) GTDA preserves the discriminative information in the
training tensors by taking the class label information into ac-
count, and 3) the optimization algorithm (the training stage) of
GTDA is convergent. When the tensor representations of EEG
data are processed by GTDA, the discriminative subspace con-
structed of a series of projection matrices can be obtained.
Big size tensors are mapped to small size tensors

according to , and is then
concatenated into a vector .

D. Fisher Score

After obtaining feature vectors in the previous step,
Fisher score is utilized to further remove redundant features, and
select most significant discriminative patterns. Fisher score [31]
is a discriminative measure of an individual feature for binary
classification tasks. It is defined as

(3)

where and denote the means of class 1 and class 2 over
an individual feature, and and denote corresponding
variances.

For each individual feature, its fisher score is computed, and
then features with the -largest Fisher scores are retained as
the most significant features, and other features are discarded
as the discriminatively redundant features. In this step, the most

significant discriminative patterns are obtained from the corre-
sponding projection matrices of the retained features. It is worth
emphasizing that other dimensionality reduction algorithms [3],
[5], [17], [18], [40]–[42] can replace the Fisher score to achieve
different advantages

E. SVM for Classification

SVM [38] obtains top-level performance in many applica-
tions, e.g., BCI [35], because it has good generalization ability
in minimizing the VC dimension and achieving a minimal struc-
tural risk [38]. In this scheme, the Gaussian radial basis function
(RBF) is used as the kernel function and a five-fold cross-vali-
dation is utilized to choose suitable SVM parameters to predict
the labels of new samples in the testing phase.

III. DATA ACQUISITION

To test the effectiveness and the robustness of the proposed
tensor-based scheme, we assembled three datasets (Datasets
1–3) which collected EEG data from different subjects per-
forming different mental tasks according to various mental
control paradigms. Totally, nine healthy male subjects, aged
from 21 to 30, took part in the experiments. 62 channels of EEG
signals were recorded by an ESI-128 Channel High-Resolution
EEG/EP Systems (SynAmps2, Neuroscan) at Laboratory for
Brian-like Computing and Machine Intelligence, Shanghai Jiao
Tong University, Shanghai, China, using the following channels
located at standard positions of the 10–20 international system:
FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6,
F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5,
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C3,C1,CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2,
CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5,
PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, and CB2. In
the data collection stage, each subject was asked to seat in
an armchair, keeping arms on the chair arms with two hands
relaxing, and looks at a computer monitor approximately 1 m
in front of the subject at eyes level.

Dataset 1 was collected from five subjects performing the
motor imagery task in our online BCI system experiment [15],
which has also been extensively used in existing BCI systems.
The paradigm required the subject to control a cursor moving
on the monitor by imagining the movements of his right or left
hand for 2 s with a 4-s break between trials. For each subject,
the data were collected over two sessions with a 15-min break
in between. The first session was conducted without feedback,
and 60 trials (30 trials for each class) obtained in this session
were used for training and analysis. 140 trials (70 trials for each
class) in the next session were taken as testing data to give on-
line feedbacks. EEG signals were recorded, sampled at 500 Hz
and bandpass filtered between 0.1 and 100 Hz.

Dataset 2 was collected from another two subjects performing
two cognitive tasks, i.e., the figure perception and the mental
arithmetic. In the figure perception task, the monitor displayed
two classes of geometric figures (squares and triangles), and the
subject must identify the class of the figure. In the mental arith-
metic task, the monitor displayed an arithmetic formula con-
taining three integers and the subject must perform the relevant
mental calculation. The two tasks were carried out turn-by-turn,
with the subject performing a task for 2 s, relaxing for 4 s, and
then switching to the other task. Each subject took part in four
data collection sessions with 60 trials (30 trials for each task)
in each and 10-min break in between. Each session was con-
ducted in the same fashion, and we took each session data as a
training dataset in turn, and other sessions were used as testing
data. EEG signals were recorded, sampled at 1000 Hz and band-
pass filtered between 0.1 and 100 Hz.

Dataset 3 was collected from further two subjects performing
a memory task in which the monitor briefly displayed either a
plain white background or an English word on the white back-
ground for one second with an inter-trial interval of 4 s. When
an English word was presented, the subject was required to
recall its meaning and pronunciation. When the empty back-
ground was presented, the subject needed not to make any ex-
plicit responses. The recorded EEG data were segmented into
two classes of epochs according to whether it corresponded to
displaying the English word (the memory task) or the empty
background. The sessions of data collection and the subdivision
of testing and training data were the same as Dataset 2.

IV. EXPERIMENTS AND RESULTS

In this section, we describe our experiments and results on the
three aforementioned datasets, where dataset 1 contains data ac-
quired from the motor imagery task and Datasets 2 and 3 refer
to cognitive and memory tasks. To begin with, we applied the
proposed scheme in Dataset 1, whose related spectral charac-
teristic was known, and evaluated its performance in compar-
ison with that of three popular algorithms. Then, the proposed

scheme was applied to Datasets 2 and 3, where the discrimina-
tive spectral properties for them were not specifically identified.

A. Results on Dataset 1

Dataset 1 contains data about two classes of motor imagery
tasks. The performance of the proposed tensor-based scheme
in this dataset was compared with three popular algorithms,
which are power spectrum density (PSD) [19], common spatial
patterns (CSP) [16], and nonnegative multiway factorization
(NMWF) [28]. We utilized each algorithm to extract discrim-
inative features from different types of data to detect change
of rhythmic activity in different mental states. For PSD, power
spectral density values were computed as discriminative fea-
tures from one-way EEG data (time) at given channels and
frequency bands. CSP was applied to extract discriminative
features from two-way EEG data (channel time), and NMWF
was utilized to extract features from multiway EEG data
(channel frequency time) according to [20]. The corre-
sponding discriminative patterns were illustrated, respectively,
and comparisons of them among different algorithms were
made (in order to give more clear comparisons, the spatial pat-
terns were illustrated by focusing in the centro-parietal region
and the spectral patterns were all showed in absolute weights).

According to [12] and [16], exemplary spectral characteris-
tics of EEG in motor imagery tasks were involved in rhythm
(8–13 Hz) and rhythm (14–30 Hz). In details, imagining left
or right hand movement causes ERD within 8–30 Hz frequency
band on the contralateral hemisphere, and ERS on the ipsilateral
hemisphere. Those phenomena happened in the centro-parietal
region, especially evident at channels C3 and C4.

To evaluated performances of four algorithms when the prior
neurophysiologic knowledge was available, we preprocessed
data by given frequency band filter (8–30 Hz, which contains
all rhythms related to motor imagery according to the available
spectral characteristic). Visual inspection showed that artifacts
had been filtered out. The filtered signals were segmented into
epochs (1–2000 ms).

For each trial, PSD features (8–30 Hz) at C3, C4, and CZ
channels were calculated based on a temporal Fourier transform.
Significant differences were observed in the averaged PSD for
the two performed tasks. Imagining left hand movement led to
the decrease of and rhythms’ power at C4 channel and the
increase at C3, whereas the contrary phenomena occur during
imagining right hand movement. Fig. 2 illustrates the average
power spectrum at channels C3 and C4 for the second subject,
evident differences are presented between the two tasks, espe-
cially around 12–13 Hz.

The two most significant spatial patterns extracted by CSP for
the second subject are illustrated in Fig. 3, showing highest dis-
criminative weights at C3 and C4 in the centro-parietal region,
respectively. The most significant pattern for the left movement
imagination is focused at channel C3 [2] as illustrated in the left
part of Fig. 3. Similarly, for the right-hand movement imagina-
tion, the focus is at C4 [2] as the other most significant pattern
shown in the right part of Fig. 3.

For each epoch sample, the tensor was constructed in the
given spatial-spectral-temporal range (62 channel; 8–30 Hz;
1–2000 ms, step by 20 ms). Fig. 4 shows the spatial, spectral
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Fig. 2. PSD analysis for the second subject. There are significant differences
in the average power spectrum at C3 and C4 for two performed tasks, especially
around 12–13 Hz. The black line stands for imagining left hand movements, the
gray line stands for imagining right hand movements, and the blue line stands
for the absolute weight difference between two tasks.

Fig. 3. The two most significant spatial patterns extracted by CSP method for
the second subject.

and temporal patterns of two most significant features extracted
by the proposed scheme for the second subject. Comparing
the spectral patterns with the absolute difference between two
tasks in PSD analysis, consistent characteristics were identified
between them, and the most discriminative frequency bands
were both concentrated around 12–13 Hz. In each spatial
pattern, the highest absolute weights with opposite directions at
C3 and C4 mean the C3 and C4 take leading roles for two tasks
respectively. For comparison, the spatial, spectral and temporal
patterns of two removed redundant features are also shown in
Fig. 5, it is evident that the physiologically meaningful patterns
are extracted by the proposed scheme.

In NMWF analysis, tensors were identical to the previous
ones. The two most significant spatial, spectral and temporal
patterns for the second subject are shown in Fig. 6. Although
the patterns presented significant relations to two tasks respec-
tively, they were less distinctive on classification than the pat-
terns obtained by the proposed scheme and CSP. For example,
the spatial patterns revealed the contralateral area for each task,
but C3 and C4 could not be identified as the evidently highest
weight channels in the centro-parietal region. This is because
NMWF is optimal for data reconstruction but not for classifica-
tion, while the proposed tensor scheme and CSP directly take
discriminative features into account.

Based on the selected parameters in the training data, a
validation procedure was conducted on the testing data for

Fig. 4. The spatial, spectral, and temporal patterns of two most significant fea-
tures in the proposed tensor-based scheme for the second subject.

Fig. 5. The spatial, spectral, and temporal patterns of two removed redundant
features in the proposed tensor-based scheme for the second subject.

performance evaluation. For all algorithms, the number of
features was reduced to 2–10 according to the training perfor-
mance (more features cannot improve the training accuracy).
Classification results are listed in the Table I. For the fourth
and fifth subjects, all algorithms performed poorly. For the
first, second, and third subjects, PSD obtained the accuracies
from 62.1% to 75.0%. Since PSD calculated power spec-
tral density features from one-way EEG data (time) at given
channels and frequency bands which actually reflected the
average spectral power distribution in a segment of time, and
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Fig. 6. The two most significant spatial, spectral, and temporal patterns ex-
tracted by NMWF for the second subject.

TABLE I
CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON

THE FIRST DATASET (8–30 HZ)

did not directly take the discriminative analysis on the spatial
and spectral modes, it was not very effective for classifica-
tion; CSP achieved remarkable performance by constructing
discriminative spatial patterns from two-way EEG data; with
multiway analysis, NMWF and the proposed scheme both
obtained high classification accuracies. The accuracies of the
proposed scheme were higher than NMWF, because GTDA,
used in the scheme for feature extraction, extracted multilinear
discriminative features for classification, whereas NMWF was
rather a multiway decomposition technique than classification
technique. For the five subjects, the proposed scheme achieved
accuracies compared favorably to CSP: the average of accu-
racies was 76.3%, and CSP was 75.6%. Experimental results
suggested that the proposed scheme performs comparably to
CSP on properly preprocessed EEG data.

To investigate the robustness of all algorithms, the feature
extraction without considering prior knowledge was also
demonstrated. Raw EEG data were processed only by filtering
through the general EEG wave spectral range (4–45 Hz) and
the tensor objects were constructed in the general spatial-spec-
tral-temporal range (62 channel; 4–45 Hz; 1–2000 ms, step by
20 ms). As listed in Table II, classification accuracies dropt for
all algorithms. Especially, the average classification accuracy

TABLE II
CLASSIFICATION ACCURACIES OF FOUR ALGORITHMS ON

THE FIRST DATASET (4–45 HZ)

Fig. 7. The two most significant spatial patterns extracted by CSP for the
second subject. The patterns have no significance in discrimination.

of CSP dramatically decreased to 50.6%. Since CSP detects
change of rhythmic activities based on the temporal variances
of signals, it is particularly noise prone and ineffective for the
feature extraction in the general EEG wave range. Fig. 7 shows
the two most important spatial patterns for the second subject
extracted by CSP. The patterns had no significance in discrimi-
nation entirely. However, by using the multiway discriminative
analysis, the proposed scheme can still maintain high accuracy.
For the first and second subjects, the accuracies of the proposed
scheme were still higher than 80%, and discriminative spatial
and spectral patterns can still be obtained as shown in Fig. 8. In
summary, the performance of CSP highly depends on filtering
data through a specific preidentified frequency band, while the
proposed scheme is more robust than CSP in identifying the
discriminative patterns and features for noisy data.

B. Results on Dataset 2 and Dataset 3

Dataset 2 contains data from two subjects performing the
figure perception and the mental arithmetic task, and Dataset 3
contains data from two subjects performing the memory tasks
for identifying, remembering English words. Compared with
motor imagery tasks (Dataset 1), the discriminative spectral
properties for cognitive and memory tasks in Dataset 2 and
Dataset 3 are not specifically identified.

The raw EEG data were preprocessed by the band filter in
general EEG wave spectral range (4–45 Hz), and then seg-
mented into epochs (1–2000 ms for Dataset 2, 1–1000 ms for
Dataset 3). For each trial, the tensor was constructed in the
general EEG spectral range (62 channel; 4–45 Hz, the general
EEG wave frequency range; 1–2000 ms for Dataset 2, step by
50 ms, 1–1000 ms for Dataset 3, and step by 20 ms).

In order to reveal the most discriminative patterns and
test the stability of the proposed scheme, each session data
were taken as a training dataset in turn, and other sessions
were used as a testing dataset, i.e., a 4 times cross-validation
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Fig. 8. The two most significant spatial and spectral patterns extracted by the proposed tensor-based scheme for the second subject. The patterns still have signif-
icance in discrimination.

Fig. 9. The most significant spectral patterns extracted by the proposed tensor-
based scheme from the session 1 data of Dataset 2. The left is for the sixth
subject and the right is for the seventh subject.

was conducted on Datasets 2 and 3, respectively. For each
training dataset, four features with the largest Fisher scores
were considered, and the corresponding patterns were selected
as the significant discriminative patterns. For Dataset 2, each
discriminative spectral pattern showed highest weights in
low-frequency band (4–14 Hz). Fig. 9 gives an illustration of
the most significant spectral patterns in absolute weights for
each subject. For Dataset 3, the discriminative spectral patterns
indicated close relation to high-frequency band (12–45 Hz).
Fig. 10 gives an illustration of the two most significant spectral
patterns in absolute weights for each subject. The classification
accuracies for the two Datasets are listed in Tables III and IV,
respectively. The proposed scheme acquired high accuracies
for both datasets, while the performance of CSP was poor in
the general EEG wave spectral range. For both of the datasets,
by filtering the EEG data through the discriminative frequency
band identified by the proposed scheme, the performances of
CSP were substantially improved. For comparison, CSP is also
applied in the EEG data filtered through insignificant frequency
bands. The corresponding results showed that the discrimina-
tive spectral patterns extracted by the proposed scheme gave
effective instructions for CSP.

Fig. 10. The two most significant spectral patterns extracted by the proposed
tensor-based scheme from the session 1 data of Dataset 3. The left is for the
eighth subject and the right is for the ninth subject.

TABLE III
CLASSIFICATION ACCURACIES OF TWO ALGORITHMS ON

THE SECOND DATASET

At the end of this Section, it can be concluded that CSP and
the proposed tensor based scheme can both achieve good per-
formance in classification of properly preprocessed EEG data.
However, the proposed scheme is more robust than CSP to ex-
tract discriminative features for noisy data, and it is most useful
when the spectral characteristics of tasks are unavailable.
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TABLE IV
CLASSIFICATION ACCURACIES OF TWO ALGORITHMS ON THE THIRD DATASET

V. CONCLUSION

In this paper, a tensor-based scheme is proposed for the single
trial EEG classification, which incorporates merits from the spa-
tial-spectral-temporal domain based EEG signal representation,
GTDA based multilinear discriminative subspace reservation,
Fisher score based redundant indiscriminative pattern elimina-
tion, and SVM based classification.

Unlike conventional algorithms, such as PSD and CSP, the
proposed scheme includes the specific information endorsed by
multiple-modalities, and improves identifying EEG activity for
classification in the spatial-spectral-temporal domain. Further-
more, benefiting from GTDA based multilinear discriminative
subspace reservation, and Fisher score based redundant in-
discriminative pattern elimination, it is efficient for extracting
multiway discriminative subspace from high dimensionality
and high order EEG representation. Consequently, the pro-
posed scheme is more powerful for EEG classification than
conventional algorithms as well as NMWF which is practically
a multiway decomposition technique.

Evaluations on three datasets confirmed the efficiency of
the proposed scheme. In the motor imagery task, the proposed
scheme performed comparably to CSP. It is worthy empha-
sizing that the proposed scheme is more robust than CSP by
taking multi-way discriminative patterns into account. The
robustness of proposed scheme is very useful because it can be
applied to extract the discriminative features and patterns when
the spectral characteristics in some paradigms are not available.
In cognitive and memory tasks, although the discriminative
spectral properties are not specifically identified, the scheme
extracts the discriminative patterns and features in the general
EEG wave range and achieves high classification accuracy.
Besides, the discriminative spectral properties identified by the
proposed scheme could be taken as effective instructions for
CSP.

Our studies show that the proposed tensor-based scheme is
an effective and robust data exploratory tool in classifying EEG
signals, especially in the case of lacking prior neurophysiologic
knowledge.
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